GABAergic modulation of the activity of globus pallidus neurons in primates: in vivo analysis of the functions of GABA receptors and GABA transporters.
نویسندگان
چکیده
Neurons in the external and internal segment of the globus pallidus (GPe and GPi, respectively) receive substantial GABAergic inputs from the striatum and through axon collaterals of neighboring pallidal neurons. The effects of GABA on pallidal activity depend on the synaptic localization of GABA receptors and the distribution and activity of GABA transporters (GATs). To explore the contribution of GABA receptors and transporters to pallidal function, we recorded the activity of single neurons in GPe or GPi before, during, and after local microinjections of GABAergic compounds in awake rhesus monkeys. Activation of GABA(A) or GABA(B) receptors with muscimol or baclofen, respectively, inhibited pallidal activity. These effects were reversed by concomitant infusion of the respective GABA receptor antagonists, gabazine and CGP-55845. Given alone, the antagonists were without consistent effect. Application of the selective GAT-1 inhibitor, SKF-89976A, and the semiselective GAT-3 blocker, SNAP-5114, decreased pallidal activity. Both GAT inhibitors increased GABA levels in the pallidum, as measured by microdialysis. Electron microscopic observations revealed that these transporters are located on glial processes and unmyelinated axonal segments, but rarely on terminals. Our results indicate that activation of GABA(A) and GABA(B) receptors inhibits neuronal activity in both segments of the pallidum. GAT-1 and GAT-3 are involved in the modulation of endogenous GABA levels and may be important in regulating the extrasynaptic levels of GABA. Together with previous evidence that a considerable proportion of pallidal GABA receptors are located outside the synaptic cleft, our experiments strongly support the importance of extrasynaptic GABAergic transmission in the primate pallidum.
منابع مشابه
Functions of GABA Receptors and GABA Transporters Pallidus Neurons in Primates: In Vivo Analysis of the GABAergic Modulation of the Activity of Globus
متن کامل
GABAergic neurotransmission in globus pallidus and its involvement in neurologic disorders.
The globus pallidus occupies a critical position in the 'indirect' pathway of the basal ganglia and, as such, plays an important role in the modulation of movement. In recent years, the importance of the globus pallidus in the normal and malfunctioned basal ganglia is emerging. However, the function and operation of various transmitter systems in this nucleus are largely unknown. GABA is the ma...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملSubcellular localization of GABAB receptor subunits in rat globus pallidus.
The inhibitory amino acid gamma-aminobutyric acid (GABA) is the major neurotransmitter in the globus pallidus. Although electrophysiological studies have indicated that functional GABA(B) receptors exist in rat globus pallidus, the subcellular localization of GABA(B) receptor subunits and their spatial relationship to glutamatergic and GABAergic synapses are unknown. Here, we use pre-embedding ...
متن کاملGABAergic control of substantia nigra dopaminergic neurons.
At least 70% of the afferents to substantia nigra dopaminergic neurons are GABAergic. The vast majority of these arise from the neostriatum, the external globus pallidus and the substantia nigra pars reticulata. Nigral dopaminergic neurons express both GABA(A) and GABA(B) receptors, and are inhibited by local application of GABA(A) or GABA(B) agonists in vivo and in vitro. However, in vivo, syn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 94 2 شماره
صفحات -
تاریخ انتشار 2005